
�

ARDUINO
FÜR PRODUKTDESIGNER

�

�

ARDUINO
FÜR PRODUKTDESIGNER

Autor 		 Sascha Greilinger
		 Produktdesign-Student
		 Hochschule Coburg

		 sascha.greilinger@stud.hs-coburg.de

Version		1 .6	 5/2017

Copyrights	 Alle Fotos und Grafiken wurden selbst
		 erstellt.

		 Diese Anleitung ist OpenSource und 		
	 	 darf frei verbreitet werden.

Haftungsausschluss

	 	 Der Autor haftet nicht für den Inhalt von 	 	
		 Webseiten, die in diesem Dokument 		
	 	 referenziert werden.

	 	 Der Autor übernimmt keine Gewähr für die
	 	 Aktualität, Korrektheit und Vollständigkeit 	 	
	 	 des Inhalts dieser Anleitung.

	 	 Er übernimmt keine Verantwortung für
	 	 durch die Nutzung der Informationen
	 	 entstandenen Schäden.

INHALTSVERZEICHNIS

Über diese Anleitung 4

Was sind Mikrocontroller? 6...7

Arduino-Boards 8

Technische Daten und Pinout 9

Arbeiten mit Steckboards 10...11

Arduino Programmierumgebung 12

Hilfe und Dokumentation 13

Einrichten des Boards 14...15

Hochladen eines Programms 16

Allgemeines zum Programmieren 17

Aufbau eines Programms 18

Variablen 19...20

Variablen verknüpfen 21

IO-Pins abfragen und steuern 22...26

Felder und Strukturen 27

Abfragen 28

Schleifen 29...30

Verarbeitung von Analogwerten 31

Serielle Ausgabe 32

Zeitfunktionen 33

Nützliche Programmiervorlagen 34

Elektromechanische Bauelemente 36

Leistungselektronik 37

Anzeigen 38...39

Sensoren 40...42

Aktoren 43

Erweiterungen für Arduino 44

Sonstiges 45

Kleine Elektronik-Formelsammlung 46...47

�

ÜBER DIESE ANLEITUNG

Diese Anleitung soll...

Produktdesign-Studenten den Einstieg in die
Arduino-Welt ermöglichen

Die Grundlagen ausführlich, aber leicht verständlich
beschreiben und darstellen

Ein Nachschlagewerk für die wichtigsten C-Befehle
sein und diese mit Beispielen verständlich machen

Hilfe zu häufig auftretetenden Problemen liefern

Eine Übersicht über einsetzbare elektronische
Bauteile liefern

Für Produktdesigner interessante elektronische
Formeln erklären

Ziel dieses Kurses ist es...

Möglichkeiten kennenlernen - mit Mikrocontrollern
in Bezug auf kreative Projekte

Verständnis aufbauen für einen Bereich von
Ingenieuren, Informatikern und Technikern

Berührungsängste abbauen zu Programmierung
und Elektronik

Interesse wecken, Neugierig machen

Grundlagen des Programmierens kennen

Anwendung von Elektronik vertiefen

�

Vorteile für Produkt-Designer:

Darstellung elektronischer Features in Mockups,
Modellen und Prototypen

Usability testen (sinnvolle Bedienabläufe)

Intuitive Bedienung entwickeln (Einfachheit der
Bedienung)

Ergonomie mit funktionierenden Modellen testen
(Anordnung und Form von Taster, Anzeigen,
Aktoren)

Gesamteindruck von elektronischen Produkten
darstellen

Auch elektronische Funktionen von Designern
gestaltbar

Flexible Änderungen des Programms,
Unabhängigkeit von vorhandener Hardware

Komplexere Funktionen auch ohne tiefere
Elektronik-Kenntnisse realisierbar

Mikrokontroller sind auch für andere Projekte
wiederverwendbar

Entwickelte Programme können ggf. auch für die
Fertigung der Produkte weiterverwendet werden

It‘s not(only) A Nerd thing,
	 it‘s a Product Design tool!

�

WAS SIND MIKROCONTROLLER?

Mikrocontroller sind für die Elektronik das, was 3D-Drucker für die Konstruktion und den Modellbau sind...

Es handelt sich um Chips, sog. „ICs“ (integrated
circuit) in denen ein miniaturisierter Computer
untergebracht ist. Das Funktionsprinzip ist dasselbe
wie bei PCs, Laptops, Tablets oder Smartphones: Ein
Prozessor lädt Programme von einem Festspeicher
in einen schnellen Arbeitsspeicher, führt diese
Programme aus und liest und schreibt Daten auf
die beiden Speicher oder nutzt Schnittstellen zur
Kommunikation mit anderen Geräten.

Mikrocontroller (umgangssprachliche Abk. „µC“)
sind auf eine gewisse Anzahl digitaler oder analoger
Aus- und Eingänge beschränkt und ihr Betriebssystem
ist auf einfache Steuerfunktionen reduziert. Ihre
Rechenleistung beträgt nur Millionstel der Leistung
von modernen Computern.

Sie sind jedoch in der Lage, mit übergeordneten
Systemen über Schnittstellen (z.B. WiFi, BT, LAN,
CAN-Bus, Gebäudeautomationsnetze) Daten
auszutauschen, was ihnen in einer immer vernetzteren
Welt einen hohen Stellenwert einbringt.

In der Welt des IoT (Internet of Things) spielen
sie eine zentrale Rolle. Sie können über Sensoren
benötigte Informationen aufnehmen und in lokalen
Netzwerken oder dem Internet bereitstellen, Aktoren
steuern oder beides. Dabei können sie aber auch
„offline“ Steuerungsaufgaben übernehmen und eine
eigene, dezentrale „Intelligenz“ besitzen.

Mikrocontroller sind also ein mächtiges Werkzeug:

Flexibel, da das Programm anpassbar und
erweiterbar ist.

Einfach, da wenig zusätzliche Elektronik für das
Realisieren komplexer Aufgaben notwendig ist.

Vernetzbar mit weit verbreiteten Bussystemen.

Platzsparend, da ein wenige Millimeter großer
Chip umfangreiche Schaltungen ersetzen kann.

Mobil einsetzbar, da geringe Stromaufnahme.

Fertigungsnah, da in vielen industriell hergestellten,
elektronischen Produkten auch Mikrocontroller
verbaut sind.

Günstig, da massenproduziertes Bauteil.

schnell | einfach | computergestützt | mit geringem Materialaufwand
KOMPLEXE PROJEKTE

REALISIEREN

�

Displays
Benutzerinterface,
Anzeige von Werten

Analoge Bedienelemente
Dreh- und Schiebepotentiometer

Konstantstromquellen
Dimmen von Hochleistungs-LEDs

Sensoren
z.B. Ultraschall-Abstandsmesser

Schnittstellenmodule
WiFi, BT, LAN, 2,4 GHz Funk
Web-Interface, App-Steuerung

Elektroakustische Bauteile
Lautsprecher, Piezo-Signalgeber,
Mikrofone

Leuchtdioden (LEDs)
Signalleuchten, Anzeigen

Digitale Bedienelemente
Taster, Schalter

Leistungselektronik/Relais
zum Schalten großer Ströme
und Spannungen

An einen Mikrocontroller können viele elektronische Bauteile direkt oder mit geringem Schaltungsaufwand
angeschlossen werden:

(((())))

�

ARDUINO-BOARDS

Sogenannte Entwicklungsboards machen es
den AnwenderInnen einfach ihre Projekte mit
Mikrocontrollern umzusetzen, indem alle für
den grundlegenden Betrieb notwendige Bauteile
bereits auf einer Platine aufgebracht sind. Die
Boards können entweder über Lötpunkte direkt
mit Leitungen verbunden werden oder besitzen
Stifte bzw. Buchsen zum Verbinden mit Steckboards
oder Steckleitungen.

Nachfolgende Informationen beziehen sich
speziell auf das Arduino „Nano“ Board, andere
Entwicklungsboards sind aber sehr ähnlich
aufgebaut.

Programmiert werden kann das Board mit einem
USB-Anschluss, der über einen Schnittstellen-
Adapter mit der UART-Schnittstelle des
Mikrocontrollers verbunden ist.

Der Resettaster dient zum manuellen Rebooten
des Microcontrollers. Dies kann auch über den Pin
„RST“ erfolgen.

Pin 13 ist zudem mit einer LED auf dem Board
verbunden und kann als Statusanzeige oder für
einfache Programmierübungen genutzt werden.

Drei weitere LEDs zeigen Spannungsversorgung,
sowie das Senden und Empfangen von Daten über
die serielle Schnittstelle an.

Die SPI-Schnittstelle dient zum direkten
Programmieren des Controllers ohne Bootloader
mit einem speziellen Programmiergerät und ist für
unsere Zwecke vernachlässigbar.

Ein Spannungsregler auf der Rückseite stellt eine
stabile Spannung für das Board und angeschlossene
Bauteile her. Zudem steht eine 3,3 Volt Quelle
sowie eine konfigurierbare Referenzspannung für
die Analogeingänge zur Verfügung.

SPI-Schnittstelle zum
Flashen des µC mit
einem Programmer

USB Mini-B Buchse
Verbindung zum PC

Mikrocontroller
ATmega328

Taktquarz

Reset-Taster

Montage-Löcher

Status-LED:
Spannung vorhanden

Status-LEDs:
Senden/Empfangen

Ansteuerbare LED
(auf Pin 13)

Taktquarz für Schnitt-
stellen-Adapter

Schnittstellen-Adapter
USB zu Seriell (UART)

Spannungsregler 5 V

Vorderseite

Rückseite

�

Digitaler IO Pin D13 ●

3,3 Volt Spannungsquelle ●

Referenzspannung für Analogeingänge ●

 Analogeingang A0 ●

A1 ●

A2 ●

A3 ●

A4 ●

A5 ●

A6 ●

A7 ●

5 Volt Spannungsquelle ●

Reset ●

Minus ●

Anschluss Spannungsversorgung 7-12V ●

● D12 Digitaler IO Pin

● D11 	 (PWM)

● D10 	 (PWM)

● D9 	 (PWM)

● D8

● D7

● D6 	 (PWM)

● D5 	 (PWM)

● D4

● D3 	 (PWM)

● D2

● Minus

● Reset

● Schnittstelle

● Schnittstelle

TECHNISCHE DATEN UND PINOUT

Technische Daten:

Controller				 ATmega328

Spannung	 	 direkt: 5V DC

über Spannungsregler: 7-12V DC

Stromaufnahme	1 9 mA

Flash-Speicher (Programmspeicher)	32 kByte

RAM (Arbeitsspeicher)�2 kByte

EEPROM (nichtflüchtiger Speicher)	1 kByte

●	 Digitale IO Pins

●	 Analogeingänge

●	 Spannungsversorgung

●	 Sonstiges

Taktrate�1 6 MHz

Digitale IO-Pins	 	 	 	 12

...davon PWM-fähig		 6

Belastbarkeit der Ausgänge	 max. 40 mA

Analogeingänge	 	 	 	 8

Auflösung Analogeingänge	 10 Bit

Abmessungen:	 	 18 x 45 mm

Pinout-Übersicht:

10

ARBEITEN MIT STECKBOARDS

Steckboards dienen in der Elektronik zum
schnellen Aufbau von Schaltungen zu Test- und
Entwicklungszwecken. Fast alle Bauteile können
darauf eingesteckt und durch Steckbrücken oder
einfache Drähte miteinander verbunden werden.

Unter dem Kunststoffgehäuse mit Lochraster
befinden sich Kämme aus Blech, die eingesteckte
Drähte mit einem Federmechanismus festhalten
und den elektrischen Kontakt herstellen.
Nebeneinanderliegende Löcher (Reihen) sind
gebrückt, übereinanderliegende (Spalten) isoliert.

Die Boards gibt es in verschiedenen Größen
und Ausführungen. Manche besitzen auch
senkrecht verlaufende Kontaktbahnen für die
Spannungsversorgung, welche farblich markiert
sind.

Viele Steckboards sind untereinander erweiterbar
oder mit Montagelöchern und Klebeflächen auf der
Rückseite versehen.

Eine Auswahl an verfügbaren Steckboards:

Die Kontakte sind reihenweise mit je
5 Löchern auf jeder Hälfte gebrückt

Bei diesen Boards sind die äußeren
Kontaktspalten zur Spannungs-
versorgung senkrecht durchgebrückt

11

ARBEITEN MIT STECKBOARDS

Der Arduino Nano ist speziell für den Einsatz auf
Steckboards konzipiert. Mit angelöteten Stiftleisten
an den Pins kann er direkt auf die Boards gesteckt
und seitlich kontaktiert werden.

Leitungsfarben
Um sich im Kabelsalat auf den Steckboards besser
zurechtzufinden, macht es Sinn, verschiedenfarbige
Drähte zu verwenden, denen bestimmte Potentiale
bzw. Aufgaben zugeordnet sind:

		 Rot	 Plus

		 Blau	 Minus

		 Grau	 Steuer- und Messsignale

Achtung!
Kurzschlüsse zwischen Plus und Minus können im
Batteriebetrieb zu hohen Strömen, starker Erwärmung
und Zerstörung der Bauteile sowie zu Explosion
der Batterien führen. Bei Nutzung des USB-Ports
als Spannungsquelle kann sich der angeschlossene
Computer abschalten oder schlimmstenfalls Schäden
davontragen.

Vorsichtsmaßnahmen:

Nicht unter Spannung verdrahten!

Aufbau vor Inbetriebnahme überprüfen!

Aderfarben beachten!

Drähte mit Plus und Minus nicht direkt
nebeneinander stecken!

Bei der Positionierung der Bauteile ist man relativ
frei, man sollte jedoch auf eine platzsparende
Anordnung achten, die keine zu langen Drahtstücke
erfordert. Die Bauteile müssen immer so gesteckt
sein, dass ihre Kontakte mit Drähten erreichbar sind
und nicht von der Brückung der Steckboard-Kontakte
kurzgeschlossen werden.

Taster und Potentiometer sollten gut bedienbar
sein. Sensoren sollten nicht durch Drähte oder

Aktoren gestört werden. Ein Helligkeitssensor sollte
beispielsweise nicht direkt neben einer LED platziert
werden.

Es ist einfacher, zuerst die Bauteile einzustecken
und diese danach erst untereinander und mit dem
Mikrocontroller zu verbinden.

Die Board-Pläne wurden mit der Freeware „Fritzing“
erstellt, welche die Arbeit mit den Steckboards sehr
vereinfacht. Aus den Board-Plänen können damit
auch direkt Schaltpläne und Platinenlayouts erstellt
werden.

Aufgrund der übersichtlicheren Darstellung wird
in diesem Dokument der elektronische Schaltplan
bevorzugt verwendet.

Aufbau zur Programmierung eines Dämmerungsschalters mit
Taster, LED und Fotowiderstand (LDR).

12

ARDUINO-PROGRAMMIERUMGEBUNG

Die Programmiersoftware, auch IDE (Integrated
Development Environment) genannt, wurde
möglichst übersichtlich und einfach aufgebaut, so dass
sich auch Menschen ohne Programmierkenntnisse
schnell zurecht finden. Kompliziertes Konfigurieren
und Anpassen des Codes an den Microcontroller
werden durch ein auf dem Chip vorinstalliertes
„Betriebssystem“, dem sogenannten Bootloader,
umgangen. Da die Boards standardisiert und in der
IDE vorkonfiguriert sind, ist die Inbetriebnahme und
das Übertragen des Programms mit wenigen Klicks

Serieller Monitor

Meldungsfenster

Gewähltes Board und verwendeter Port

Kompilieren (Überprüfen)

Kompilieren & Hochladen

Zeilennummern

farbige Hervorhebung von Syntax

Setup-Bereich

Programm-Bereich

Auswahl von Board, Micro-
kontroller und Schnittstelle

Projekte und Beispiel-
programme öffnen

Links zu Hilfeseiten, Forum,
Referenz, FAQ

möglich. Außerdem werden zahlreiche interessante
und gut dokumentierte Beispielprogramme
mitgeliefert, die als Vorlage für eigene Projekte
verwendet werden können. Nutzer der Software
können also sofort loslegen und sich ganz und gar
auf das Programmieren konzentrieren.

Programmiert wird in C, bzw. C++, einer Sprache, die
relativ einfach zu erlernen und eine gute Basis für
das Erlernen weiterer Programmiersprachen ist.

13

HILFE UND DOKUMENTATION

Ein weiterer Punkt, der Arduino bei Einsteigern so
beliebt macht, sind die vielfältigen Möglichkeiten
sich die Programmiersprache selbst beizubringen
und auf Hilfe und Dokumentationen einer riesigen,
weltweiten Community zurückgreifen zu können.
Oft genügt eine kurze Websuche und man findet
Beispiele zur Lösung seines Problems.

Es gibt selten etwas, das noch nicht jemand davor
schon in einer ähnlichen Weise umgesetzt hat.
Man muss also nur nach vergleichbaren Projekten
suchen.

Diese Seiten sollte jeder Arduino-Nutzer kennen:

www.arduino.cc
Download-Quelle, Projektvorstellungen, News

Reference
Die Code-Referenz für C und spezielle Arduino-
Befehle. Quasi das Wörterbuch und die
Rechtschreibung zum Programmieren.

Forum
Man muss nicht angemeldet sein, um die
Forenbeiträge sehen zu können und oft reicht
auch schon eine gezielte Suche (auf Englisch) um
die Lösung für sein Projekt zu finden.

Playground
Eine Arduino-Wikipedia, gefüllt mit Wissen
zahlreicher erfahrener Programmierer.

www.funduino.de
Eine gute deutschsprachige Seite mit vielen
nützlichen Anleitungen für Einsteiger.

www.youtube.de
Wer sich lieber mit Videos helfen lassen will,
der kann einfach auf YouTube nach ähnlichen
Projekten suchen. Außerdem findet man dort
viele interessante Projekte mit Mikrocontrollern,
von denen man sich inspirieren lassen kann.

www.fritzing.org
Fritzing ist eine freie Layoutsoftware zum
einfachen Erstellen von Steckboard-Plänen,
Schaltplänen und Platinen-Layouts.

Die Freeware beinhaltet auch eine Bauteil-
Datenbank mit vielen Entwicklerboards,
Erweiterungen und häufig genutzten
elektronischen Bauteilen.

www.embrio.io
Eine grafische Echtzeit-Programmierumgebung
für Arduino. Empfehlenswert für alle, die mit
Code-Programmierung Probleme haben.

www.elektronik-kompendium.de
Hier findet man leicht verständliche Erklärungen
und Beispiele rund um die Elektronik.

14

EINRICHTEN DES BOARDS

Eines der wenigen Dinge, die bei Arduino
konfiguriert werden müssen, sind die Einstellungen
zur verwendeten Hardware, also das Board, der
Mikrocontroller und die verwendete Schnittstelle zur
Übertragung des Programms. Dies ist aber schnell
erledigt, hier am Beispiel eines Arduino Nano:

Schritt 1: Auswahl des angeschlossenen Boards

BOARD?
PROZESSOR?

PORT?

15

Schritt 2: Auswahl des verwendeten Mikrocontrollers

Schritt 3: Herausfinden des richtigen COM-Ports

Auf der Unterseite der Platine des Arduino Nano befindet sich ein Schnittstellenwandler-
Chip, der die Kommunikation zwischen Computer und Mikrocontroller über USB herstellt.
Im Gerätemanager (Windows) wird dieser Chip als USB-Adapter für serielle Schnittstellen

erkannt. Dahinter wird die Port-Adresse des Adapters angezeigt, hier COM10.

Schritt 4: Auswahl der richtigen Port-Adresse. Fertig!

EINRICHTEN DES BOARDS

16

HOCHLADEN EINES PROGRAMMS

Jetzt gehts los! Nachdem die Verbindung zum
Mikrocontroller konfiguriert wurde, kann ein
Beispielprogramm hochgeladen werden.

Auf dem Nano-Board befindet sich eine kleine
LED, die am IO-Pin 13 des µC angeschlossen

Schritt 1: Öffnen des Beispielprogramms „Blink“

Schritt 2: Kompilieren und Hochladen des Programms
Wenn alles funktioniert hat, erscheint unten „Hochladen abgeschlossen“ und nach einem

kurzen, selbständigen Reboot des µC sollte die LED auf dem Board blinken.

ist und angesteuert werden kann. Unter den
Beispielprogrammen befindet sich ein Sketch,
welcher diese LED blinken lässt. Dazu ist keine
weitere Verdrahtung notwendig.

17

ALLGEMEINES ZUM PROGRAMMIEREN

Bevor mit dem Programmieren begonnen werden
kann, sollten einige grundsätzliche Begriffe bekannt
sein:

Firmware
Damit bezeichnet man die Gesamtheit eines
Programms auf einem Mikrocontroller. Es besteht
im Normalfall aus drei Komponenten:

Bootloader
Ein - in unserem Fall vorinstalliertes - Programm,
welches die Kommunikation mit einem Computer
über die UART- oder Ethernet-Schnittstelle
ermöglicht und die Installation der hochgeladenen
Firmware in den Flash-Speicher übernimmt.

Betriebssystem (OS)
Ähnlich wie bei einem PC sorgt das µC-
Betriebssystem für das Ausführen von Prozessen,
die Verwaltung des Speichers und das Bereitstellen
von Diensten für aufgespielte Programme.

Applikationssoftware (App)
Dieser Firmwareteil ist das eigentliche Programm,
welches von Arduino-ProgrammiererInnen hoch-
geladen wird.

Bibliotheken (library, lib)
Sie enthalten vorgefertigte Unterprogramme oder
abrufbaren Programmcode, der normalerweise
nicht standartmäßig in einer Programmiersprache
vorhanden ist, wie z.B. höhere mathematische
Funktionen, Textverarbeitung oder Ansteuerung
von Bus-Schnittstellen.

Die verwendeten Bibliotheken werden in C am
Anfang des Programmcodes definiert. Die Arduino-
Programmierumgebung bindet die meisten
Bibliotheken aber selbständig ein.

Compiler
Compiler übersetzen eine Programmiersprache wie
C in einen von Computern lesbaren Maschinencode.
Dieser Maschinencode ist für einen Prozessor zwar
direkt verarbeitbar, für ProgrammiererInnen ist
dieser Code aber sehr unhandlich.

Der Übersetzungsvorgang wird als „Kompilieren“
bezeichnet. Beim Kompilieren wird auch der
Programmcode auf Fehler überprüft. Ebenso
werden verwendete Bibliotheken in den
Maschinencode integriert.

Synthax
Sie ist die Rechtschreibung einer Programmier-
sprache und beschreibt welche Zeichen wie wo
verwendet werden dürfen, z.B. die Klammern
nach einem Befehl oder das Semikolon (;) bei
Befehlsende.

Kommentare
Kommentare dienen dazu, dem Code Erklärungen
und Beschriftungen hinzuzufügen. Sie werden
beim Kompilieren ignoriert und haben damit
keine Auswirkungen auf das Programm auf dem
Mikrokontroller.

Man kann damit auch sehr gut Programmcode
gezielt unwirksam machen um z.B. eine Funktion
schnell zu deaktivieren.

Kommentare in C können wie folgt gesetzt
werden:

// Einzeiliger Kommentar

/* mehrzeiliger Kommentar mit Anfang und

Endmarkierung */

18

AUFBAU EINES PROGRAMMS

Nachdem der µC hochgefahren (gebootet) ist,
arbeitet der Prozessor das Programm ab.

Im oberen Teil des Programms werden die
Variablen deklariert, die für die Ausführung
notwendig sind.

Danach erfolgt der einmalige Durchlauf der
Setup-Schleife. Hier werden Einstellungen
und alle Aktionen durchgeführt, die vor dem
eigentlichen Programm abgearbeitet werden
müssen.

Nach dem Durchlauf der Setup-Schleife erfolgt
die ständige Ausführung der Programm-Schleife.
Innerhalb eines Programmzyklus werden alle
Befehle innerhalb der Schleife ausgeführt.
Nach der Abarbeitung der Schleife startet die
Programm-Schleife erneut.

VARIABLEN

Unter einer Variable versteht man eine Speicherzelle
mit einem Namen, einem Datentyp und ggf. einem
Startwert. Der Datentyp der Variable bestimmt, wie
viel Speicher sie auf dem Mikrocontroller benötigt
und wozu die Variable verwendet werden kann.

19

Die wichtigsten Datentypen

	 Bezeichnung	 Inhalt						 Speicher	 Verwendungsbeispiel

	 bool		 Wahrheitswert true/false	 	 	 1 Bit	 	 Abfrage Taster

	 char	 	 Einzelnes Zeichen/Ziffer	 	 	 8 Bit	 	 Textausgabe auf Displays
	 	 	 Es wird dabei nicht direkt das Zeichen
			 gespeichert, sondern eine Zahl, die sich
	 	 	 auf ein ASCII-Zeichen bezieht.

	 int	 	 Ganzzahl 0 bis 65.535		 	 	 16 Bit	 	 Zählwert

	 double		 Ganzzahl 0 bis 4.294.967.295		 	 32 Bit	 	 Positionsangabe, Zeitwert

	 float	 	 Kommazahl von ca. 10-38 bis 1038	 	 32 Bit	 	 Analogwerte, Rechnungen

Datentypen können zusätzlich noch mit Eigenschaften ausgezeichnet werden:

	 const DATENTYP		 Datentyp mit Schreibschutz (constant), z.B. Festlegen eines IO-Pins

	 Bei Zahlen:

	 signed DATENTYP		 Datentyp mit Vorzeichen (positive und negative Werte)

	 unsigned DATENTYP		 Datentyp ohne Vorzeichen (nur positive Werte)

Erlaubte Namen für Variablen

	 Es sind Kleinbuchstaben a-z, Großbuchstaben A-Z, Zahlen 0-9 und der Unterstrich _ erlaubt.

	 Umlaute und andere Sonderzeichen sind nicht erlaubt und verursachen Fehler beim Kompilieren.

	 Die Variablennamen dürfen nicht mit einer Zahl beginnen.

	 Sogenannte Schlüsselwörter, die in der Programmiersprache vorkommen, dürfen ebenfalls nicht als
	 Variablenname genutzt werden, z.B. if, else, auto, usw…

	 Zudem soll darauf geachtet werden, dass die Variablen nachvollziehbare Bezeichnungen haben. Dies 	
	 macht das gesamte Programm für einen selbst als auch für andere leichter lesbar.

20

Deklaration
Vor der ersten Verwendung einer Variablen muss
diese deklariert werden.

Dabei wird festgelegt, welche Variable (z.B.
temperatur) welchen Datentyp (z.B. float) und
ggf. welchen Startwert (meist 0) die Variable
haben soll. Es macht deshalb Sinn, sich vor dem
Programmieren bereits Gedanken zu machen,
welche Variablen benötigt werden.

Wertzuweisungen:
Die Wertzuweisung ist wohl der häufigste Befehl im
Programm. Es können sowohl Zahlenwerte, als auch
Zustände oder Zeichen, bzw. Zeichenketten sein.

Der zuzuweisende Wert kann entweder direkt
eingegeben (Konstante) oder von einer anderen
Variablen kommen. Wichtig ist, dass die Variablen

Variable, der ein Wert zugewiesen wird = zuzuweisender Wert ;

Beispiel:

LED1 = true;	 // Einschalten von LED1

Wurde eine Variable verwendet, die nicht deklariert
wurde, wird beim Kompilieren ein entsprechender
Hinweis ausgegeben und das Programm kann nicht
hochgeladen werden.

Die Deklaration kann theoretisch überall im
Programm erfolgen, auch im setup-Bereich oder
außerhalb der beiden Bereiche. Auf alle Fälle muss
die Deklaration einer Variablen vor oder mit ihrer
ersten Verwendung im Code erfolgen.

VARIABLEN

Datentyp Variable = Startwert ;

Beispiel:

bool LED1 = false;			 // Variable für LED1

den gleichen Datentyp haben. Bei Zahlen sind hier
Typumwandlungen möglich, durch die aber evtl.
Informationen verloren gehen, z.B. durch Kürzen,
wenn eine float-Variable in eine int-Variable
umgewandelt werden soll.

21

Logische Verknüpfungen:

	 Verknüpfungsart		 Zeichen	 Beispiel

	 UND-Verknüpfung	 	 &&	 	 LED1 = (taster1 && sensor2);

	 ODER-Verknüpfung	 	 ||	 	 LED2 = (taster1 ||taster2);

	 NICHT-Verknüpfung	 	 !	 	 LED3 = !(taster1 && !sensor4);

Mathematische Operationen:

	 Verknüpfungsart		 Zeichen	 Beispiel

	 größer oder gleich	 	 >=	 	 Vergleichfunktion: if (temperatur_ist >= temperatur_soll)

	 kleiner oder gleich	 	 <=

	 genau gleich	 	 	 == 	 	 Nicht verwechseln mit Wertzuweisung durch = !

	 ungleich	 	 	 !=

	 inkrementieren	 	 ++	 	 Wert um 1 erhöhen (pro Durchlauf)

	 dekrementieren	 	 --	 	 Wert um 1 verringern (pro Durchlauf)

	 addieren	 	 	 +

	 subtrahieren			 -

	 multiplizieren	 	 	 *

	 dividieren			 /

	 Modulo	 	 	 %	 	 rest = (9 % 5);	 >> rest = 4
	 Die Modulo-Funktion nutzt man zur Bestimmung des Restes einer Division.

VARIABLEN

Typumwandlung
Schreibt man den gewünschten Datentyp in
Klammern vor die Variable, wird für die weitere
Verarbeitung dieser Datentyp verwendet.

Damit können auch unterschiedliche Datentypen
miteinander verrechnet werden.

Beispiel:

float messwert ;

int abweichung ;

int gewicht ;

gewicht = (int)messwert + abweichung ;

VARIABLEN VERKNÜPFEN

22

IO-PINS ABFRAGEN UND STEUERN

Auf dem Arduino Nano Board befinden sich zwei Arten von IO-Pins:

	 - Digitale IO-Pins, die als Ausgang, Eingang oder Kommunikationsschnittstelle genutzt werden können

	 - Analoge Eingänge, die über einen integrierten A/D-Wandler Spannungen messen können

Digitale IO-Pins
Diese Anschlüsse können als Ausgang oder Eingang konfiguriert sein. Dies erfolgt im Setup-Bereich mit den
Befehlen:

pinMode(PIN, OUTPUT) ; oder pinMode(PIN, INPUT) ;

Im Programmzyklus können als Ausgang
konfigurierte Pins mit folgenden Befehlen
angesteuert werden:

digitalWrite(PIN, HIGH) ;

Am Ausgang liegen 5 Volt an.

digitalWrite(PIN, LOW) ;

Am Ausgang liegen 0 Volt an, bzw. der Pin wird mit
Minus verbunden. Es kann also sowohl Plus als
auch Minus geschalten werden:

Die als Eingang festgelegten Pins können mit einem
Befehl, der wie eine Variable vom Datentyp bool
benutzt werden kann, abgefragt werden:

Variable = digitalRead(PIN) ;

Eine Spannung unter 1,5 Volt am Eingang ergibt
den Status false, eine Spannung über 3,0 Volt den
Status true.

Damit an einem „in der Luft hängenden“ Eingang
keine undefinierten Spannungen anliegen, z.B.
bei einem nicht gedrückten Taster, sollte der
Eingang mit einem hochohmigen Widerstand (Pull-
Down-Widerstand) mit z.B. 100 kOhm auf Minus
geschalten werden:

Der Eingang wird dadurch auf ein definiertes
Potential geschalten und bleibt false.

Arduino
Nano

Arduino
Nano

D2

GND

+5V

D2

GND

+5V

23

IO-PINS ABFRAGEN UND STEUERN

Interne Pullup-Widerstände nutzen

Eine einfachere Variante, Taster und Schalter
anzuschließen, wird durch interne Pullup-
Widerstände ermöglicht.

Diese internen Widerstände verbinden im
Mikrocontroller selbst einen IO-Pin mit Plus. Der
Eingang ist also standardmäßig true.

Schaltet ein Taster nun diesen Eingang auf Minus,
liefert er false. Die Abfrage des Tasters ist also
invertiert, was im Programm aber einfach wieder
umgekehrt werden kann, z.B. durch eine NICHT-
Verknüpfung mit einem „!“ vor der Abfrage des
Eingangs.

Um den Pullup-Widerstand für einen digitalen
Eingang zu aktivieren, muss im Setup-Bereich der
Befehl wie folgt geändert werden:

pinMode(PIN, INPUT_PULLUP) ;

Die Beschaltung von Tastern wird so wesentlich
vereinfacht, da kein externer Widerstand notwendig
ist.

24

IO-PINS ABFRAGEN UND STEUERN

IO-Pins mit Variablen konfigurieren, abfragen und steuern

Für den Zustand und der Pin-Nummer der Ein- und Ausgänge werden Variablen deklariert, die dann im
weiteren Programm immer wieder abgefragt bzw. angesteuert werden können:

Beispiel: Mit Taster eine LED ansteuern

int led_pin = 13;				 // Variable für Pin der LED

int taster_pin = 12;				 // Variable für Pin des Tasters

bool led = false;				 // Variable für Zustand der LED

bool taster = false;				 // Variable für Zustand des Tasters

void setup() {

 pinMode (led_pin, OUTPUT)		 	 // Konfigurieren des LED-Pins als Ausgang

 pinMode (taster_pin, INPUT_PULLUP)	 // Konfigurieren des Taster-Pins als Eingang

}

void loop () {

 taster = !digitalRead(taster_pin);	 	 // Verknüpfen der taster-Variable mit dem Eingang

		 	 	 	 	 	 // das Ausrufezeichen invertiert das Signal (wegen Pullup)

	 if (taster == true) {	 	 	 	 // Steuern der led-Variable abhängig vom Tasterzustand

	 led = true;

	 }

 digitalWrite(led_pin, led);	 	 	 // Steuern des Ausgangs mit der led-Variable

}

25

analogWrite(PIN, WERT) ;

Der übergebene Wert zwischen 0 und 255 stellt das Puls-Pausen-Verhältnis des PWM-Signals ein:

Mittelwert
(Integral aus Spannungsverlauf)

IO-PINS ABFRAGEN UND STEUERN

Pulsweitenmodulation (PWM)
Nicht immer ist es möglich oder sinnvoll die
Leistung eines elektronischen Verbrauchers
über das Verändern der Betriebsspannung zu
steuern. Oft ist dazu eine komplexe Schaltung
nötig oder überschüssige Spannung wird mit
Widerständen „verheizt“, was hohe Verluste
und unnötige Wärmeentwicklung bedeutet.

Darum werden viele Verbraucher durch das Puls-
Pausen-Verhältnis einer Rechteck-Spannung
gesteuert. Je länger die Pause pro Takt, desto
geringer die Leistung. PWM-fähige IO-Pins (siehe
Pinout-Übersicht), die als Ausgang konfiguriert
sind, können Signale zur Pulsweitenmodulation
ausgeben.

Da das menschliche Auge ab einer Frequenz von
ca. 60 Hz kein Flimmern mehr erkennt, kann PWM
auch zum Dimmen von LEDs genutzt werden.
Gedimmtes LED-Licht besteht eigentlich aus

Lichtblitzen, die aber so schnell hintereinander
erfolgen, dass die chemischen Vorgänge auf der
Netzhaut nicht schnell genug ablaufen um dieses
Blitzgewitter wahrzunehmen.

26

Analoge Sensoren und Potentiometer nutzen
die Referenzspannung am Pin „REF“ um genaue
Ergebnisse zu erhalten. Sie bilden zusammen mit
einem zusätzlichen Widerstand, der auf Minus
geschalten ist, einen Spannungsteiler. Der mittlere
Abgang des Spannungsteilers liefert eine Spannung,
welche Abhängig vom Widerstand des Sensors ist
und mit einem Analogeingang verbunden ist.

Der Schaltplan zeigt die Beschaltung der
Analogeingänge eines Arduino Nano mit einem
Lichtsensor (LDR) und einem Potentiometer.

IO-PINS ABFRAGEN UND STEUERN

Variable = analogRead(PIN) ;

Analoge Eingänge
Die analoge Eingänge müssen nicht im Setup-
Bereich konfiguriert werden, da sie nur
als Eingangs-Pins genutzt werden können.

Sie können mit einem Befehl ausgelesen werden,
der einen Integer-Wert zwischen 0 und 1023
ausgibt.

Damit analoge Signale digital verarbeitet werden
können, muss die am Eingang anliegende Spannung
in einzelne Bitwerte abgestuft werden. Die Analog-
Digital-Wandler unseres Mikrocontrollers haben
dazu eine Auflösung von 10 Bit. Mit 10 Bit lassen
sich 210-1 Werte, also Zahlen bis 1023 darstellen.

		 Standartwert 5 Volt:		 analogReference(DEFAULT) ;

		 Interner Wert 1,1 Volt:		 analogReference(INTERNAL) ;

Bei 5 Volt beträgt eine Spannungsstufe also 5 V/1024 = 4,88 mV ca. 5 mV. Die Spannungsstufen sind also in
etwa so verteilt:

Messspannung Bitmuster Wert
4,995 ... 5,000 Volt 1111111111 1023
4,990 ... 4,995 Volt 1111111110 1022
4,985 ... 4,990 Volt 1111111101 1021

...

0,010 ... 0,015 Volt 0000000010 2
0,005 ... 0,010 Volt 0000000001 1
0,000 ... 0,005 Volt 0000000000 0

Der A/D-Wandler teilt eine Referenzspannung
in 1024 Stufen (Null eingeschlossen) ein.

Die Referenzspannung beträgt standardmäßig 5
Volt, sie kann aber über einen Befehl im Setup-
Bereich auf 1,1 Volt geändert werden.

27

Beispiel: Schimmelwarner
Speicherung von Luftfeuchte- und Temperatur mit einem Zeitwert

	struct messung {

	double int time;

	float temperature;

	float humidity;

	}

	// Abfrage:

	if (messung.humidity >= 70.0) {

	alert = true;

	}

Beispiel: RGB-Farbwert

	int innenbeleuchtung [3] ;	 	 /* Deklariere ein Feld vom Datentyp Integer mit 3 Einträgen */

	innenbeleuchtung [0] = 128 ;		 /* Rot wird auf den Wert 128 gesetzt */

	innenbeleuchtung [1] = 39 ;		 /* Grün wird auf den Wert 39 gesetzt */

	innenbeleuchtung [2] = 0 ;		 /* Blau wird auf den Wert 0 gesetzt */

Denselben Effekt hätte eine Deklarierung des Feldes mit den gewünschten Werten:

	 int innenbeleuchtung [] = {128, 39, 0} ;

FELDER UND STRUKTUREN

Felder (array)
Will man viele Werte vom gleichen Datentyp
speichern, dann bieten sich Arrays an. Es ist wie ein
Regal für Daten und sorgt für mehr Übersicht und
Ordnung. Außerdem können die Daten in einem
Array leichter von Funktionen addressiert werden
als einzelne Variablen.

Strukturen (struct)
Sollen mehrere Daten unterschiedlichen
Datentyps zusammengefasst werden, nutzt man
Strukturen. Mit dem Namen der Struktur, einem
Punkt und dem Namen der enthaltenen Variablen
kann das „Paket“ geöffnet und auf einzelne Inhalte
zugegriffen werden.

28

Beispiel:

	if (taster1 == true) {

	programm_nummer++;

	}

if-Abfrage
Die wohl häufigste Abfrage, die eine Entscheidung
zwischen zwei Fällen durch eine Bedingung
trifft. Eine oder mehrere Bedingungen werden in
Klammern hinter dem if festgelegt. Das können
logische Verknüpfungen wie UND (&&) und
ODER (||) sein, aber auch Zahlenoperationen
oder Vergleiche. Wird die Bedingung erfüllt,
wird das, was in den geschweiften Klammern
steht, ausgeführt. Ansonsten überspringt der
Microcontroller das Programm in der if-Abfrage.
Auch Verschachtelungen sind möglich, wobei auf
das richtige Setzen der Klammern geachtet werden
muss.

switch-case Abfrage
Gibt es nicht nur zwei Fälle zu unterscheiden, sondern gleich mehrere Fälle, kann man dies elegant mit
dieser Abfrage realisieren. Jeder Fall bekommt den Wert einer Variablen zugewiesen, den diese annehmen
kann. Nimmt die Variable einen Wert an, für den kein Fall definiert ist, wird der default-Fall aufgerufen. Jeder
Fall muss mit dem break-Befehl beendet werden.

Die switch-case Abfrage eignet sich besonders gut für die Auswahl von Werten anhand einer Nummer oder
für getaktete Abläufe.

Beispiel: Auswahl verschiedener Lichtfarben durch eine Integer-Variable

	switch (farbnummer) {

	default:	 red = 0; 	 green = 0; 	 blue = 0; 	 break ;

	case(0):	 red = 255; 	 green = 0; 	 blue = 0; 	 break ;

 case(1): 	 red = 255; 	 green = 255; 	 blue = 0; 	 break ;

 case(2): 	 red = 0; 	 green = 255; 	 blue = 0; 	 break ;

 case(3): 	 red = 0; 	 green = 255; 	 blue = 255; 	 break ;

 case(4): 	 red = 0; 	 green = 0; 	 blue = 255; 	 break ;

 case(5): 	 red = 255; 	 green = 0; 	 blue = 255; 	 break ;

 case(6): 	 red = 255; 	 green = 255; 	 blue = 255; 	 break ;

 	

	}

ABFRAGEN

29

SCHLEIFEN

Durch Schleifen im Programm wird es möglich einen Ablauf zu wiederholen, bis eine bestimmte Bedingung
erfüllt ist. Ein einfaches Beispiel ist die Steuerung einer Waschmaschine. Die Vorgänge „Trommel rechts
drehen“ und „Trommel links drehen“ sollen so oft wiederholt werden, bis ein Zähler den Zählerstand erreicht,
den das gewählte Waschprogramm vorgibt um die Wäsche sauber zu bekommen.

for-Schleife

for (Zählervariable, Schleifenbedingung, Änderung der Variable) {Schleifeninhalt} ;

Bei dieser Schleife wird ein Zähler genutzt, um zu bestimmen, wie oft eine Aktion ausgeführt werden
soll. Die Syntax der for-Schleife besteht aus drei Teilen: Initialisieren einer Zählvariable, Abfrage der
Schleifenbedingung und Änderung der Zählvariable nach einem Durchlauf. Der Schleifeninhalt wird von
geschweiften Klammern umschlossen.

Beispiel: Waschmaschine

	for (int n = 0; n<10; n+1) {

	trommel _r = true;
	trommel_l = false;

	delay(20s);

	trommel_r = false;
	trommel_l = true;

	delay(20s);

	}

Was passiert? Zu Beginn wird die Zählvariable auf 0 gesetzt. Sie ist damit kleiner als 10, die Schleifenbedingung
ist daher true. Die Schleife kann durchlaufen. Der Trommelmotor dreht sich jeweils für 20 Sekunden in beide
Richtungen.

Nach einem Schleifendurchlauf – das Programm in der Schleife ist abgearbeitet – wird die Zählvariable n
um 1 erhöht. Erneut wird die Schleifenbedingung geprüft. 1 ist kleiner als 10, also wird die Schleife erneut
abgearbeitet.

Nach dem zehnten Durchlauf ist die Schleifenbedingung nicht mehr true, da n den Wert 10 erreicht hat. Die
Schleife wird nicht mehr ausgeführt und das Programm fährt mit der Abarbeitung des Codes unterhalb der
Schleife fort.

30

while-Schleife
Ist die Schleifenbedingung erfüllt, wird der Inhalt der Schleife wiederholt ausgeführt. Es wird dabei immer
vor Abarbeitung des Schleifeninhalts geprüft, ob die Bedingung noch erfüllt ist. Wenn nicht, wird die Schleife
übersprungen und der Code unterhalb der Schleife abgearbeitet.

while (Bedingung) {Schleifeninhalt} ;

do while-Schleife
Während for- und while- Schleifen zuerst prüfen, ob die Schleifenbedingung erfüllt ist bevor die Schleife
gestartet wird, erfolgt bei der do while-Schleife die Prüfung erst nach einem Durchlauf. Die Schleife wird
eingesetzt wenn zuerst eine Aktion gestartet werden muss, bevor entschieden werden kann, ob die Schleife
abgebrochen wird.

do {Schleifeninhalt} while (Bedingung) ;

Am Beispiel unserer Waschmaschine würde das die Wasserpumpe betreffen, welche das Schmutzwasser
nach der Wäsche abpumpt:

	do {

	wasserpumpe = true;
	delay(10s);

	} while (wasserstand = true);

Was passiert? Erreicht das Programm die Schleife, wird diese sofort gestartet. Die Wasserpumpe wird
eingeschaltet. Nach 10 Sekunden wird die Schleife beendet und es wird geprüft, ob noch Wasser in der
Maschine ist. Erkennt der Wasserstandsensor noch einen Rest, bleibt dieser auf true und die Schleife startet
erneut. Ist nach weiteren 10 Sekunden abpumpen kein Wasser mehr am Sensor, wird die Schleife beendet.

Abbruch einer Schleife (break)
Soll eine Schleife sofort beendet werden, unabhängig von der Schleifenbedingung, dann kann innerhalb der
Schleife der break-Befehl genutzt werden. Angenommen, die Wasserpumpe würde trocken laufen und sich
dadurch erhitzen, sollte ein Temperaturfühler im Motor das Abpumpen vorzeitig beenden um den Motor zu
schützen:

	 do {
		 wasserpumpe = true;
		 if (wasserpumpe_temp >= 70) {
		 break;
		 }

	 delay(10s);

	 } while (wasserstand = true);

Nutzt man statt break den Befehl continue, wird die Schleife nicht abgebrochen, sondern neu gestartet.

31

VERARBEITUNG VON ANALOGWERTEN

map-Funktion

Wert = map(Variable, VariablenwertMIN, VariablenwertMAX, ZielwertMIN, ZielwertMAX)

Diese Funktion macht es sehr einfach, einen Wert innerhalb eines bestimmten Wertebereiches abhängig
von einem anderen Wert mit einem anderen Wertebereich abzubilden. Das macht die map-Funktion sehr
nützlich bei Messaufgaben, wenn eine Spannung von einem Sensor wieder in die ursprüngliche Messgröße
umgerechnet werden soll. Auch Prozentrechnungen lassen sich damit einfach umsetzen.

Beispiel mit Werten: 	 50 = map(512, 0, 1024, 0, 100)

Wichtig: Die Umrechnung erfolgt streng linear. Viele Sensoren, vor allem Temperaturfühler, bilden die
Messgröße aber nicht linear auf das abgegebene Spannungssignal über den Messbereich ab. Hier ist diese
Methode nicht ganz genau.

constrain-Funktion

limitierter Wert = constrain(Wert, unteres Limit, oberes Limit)

Um zu verhindern, dass ein Wert zu groß oder zu klein wird, kann man diese Funktion nutzen. Überschreitet
der Wert das obere oder untere Limit, wird das Ergebnis auf das entsprechende Limit gesetzt.

32

SERIELLE AUSGABE

Als serielle Ausgabe bezeichnet man die Kommunikation zwischen dem Mikrocontroller und dem Computer
um Werte zu kontrollieren oder Funktionen zu überprüfen. Um die serielle Ausgabe zu ermöglichen, muss im
setup-Bereich die Baudrate (Übertragungstakt) festgelegt werden, z.B. 19200 Baud.

Die Baudrate beschreibt die Anzahl an Symbolen, die während einer Sekunde von einer
Kommunikationsschnittstelle übertragen werden. Ein Symbol kann aus mehreren Bit bestehen, die
Bitübertragungsrate kann also wesentlich höher sein.

Einstellen der Baudrate:

	 void setup() {

	 Serial.begin(19200);

	 }

Im Programmzyklus kann an beliebiger Stelle (Empfehlung: am Programmanfang und zusammenhängend)
die Ausgabe der seriellen Daten erfolgen:

	 Abfrage von Variablen		 Serial.print(temp);

	 Einfügen von Text	 	 Serial.print(„ Grad “);

	 Neue Zeile beginnen		 Serial.println();

Die Anzeige der Daten erfolgt als Text auf dem seriellen Monitor der Arduino-Programmierumgebung. Dort
muss die gleiche Baudrate wie auf dem Mikrocontroller eingestellt sein:

In jedem Programmzyklus wird die serielle Übertragung einmal ausgeführt, ggf. wird pro Sekunde also
mehrmals der Text übertragen. Hier kann die delay-Funktion z.B. delay(1000); helfen, mit der man den
Programmablauf für eine bestimmte Zeit in Millisekunden pausieren kann.

33

ZEITFUNKTIONEN

millis()
Mit dieser Funktion kann man die Systemlaufzeit des Mikrocontrollers seit dem letzten Neustart auslesen.
Die Zeit wird in Millisekunden als unsigned long int ausgegeben. Nach etwa 49 Tagen kommt es zum Overflow
– der maximale Wert innerhalb der Variablen wird erreicht und der Zähler beginnt bei 0 erneut. Interessant
ist bei der Verwendung von millis() oft nicht die Laufzeit selbst, sondern die Möglichkeit mithilfe dieser
Zahl eigene Takte und Impulse zu generieren, ohne mit dem delay-Befehl das ganze Programm anhalten
zu müssen. Neben millis() gibt es auch noch micros(), welche Mikrosekunden hochzählt und noch kürzere
Zeitfunktionen ermöglicht. Hier ein Anwendungsbeispiel zur Benutzung der millis-Funktion:

Erzeugen eines einfachen Blinktaktes von 1 Hz:
	

	 unsigned long previousMillis = 0;	 // Variable, welche die Zeit des letzten Durchlaufs speichert

 	 bool blink = false;			 // Variable für das Blinksignal

	 void setup() {

	 pinMode (12, OUTPUT);	 	 // Konfigurieren der IO-Pins für die LEDs

	 pinMode (13, OUTPUT);	

	 }

	 void loop() {

	 if (millis() - previousMillis > 500) {	 // Wenn seit dem letzten Durchlauf 500ms vergangen sind, 	 	

						 // ist die Bedingung erfüllt

 	 previousMillis = millis();		 // Der Zeitwert des letzten Durchlaufs wird mit

						 // aktuellem Zeitwert überschrieben

 	 blink = !blink;	 	 	 	 // Invertieren des aktuellen Signalzustandes, dadurch ist nur

 	 } 	 	 	 	 	 // eine if-Bedingung für das Ein- und Ausschalten notwendig

	 digitalWrite(12, blink);	 	 // Ansteuern einer LED mit der Blinktakt-Variablen

	 digitalWrite(13, !blink);	 	 // Ansteuern einer LED, die invertiert blinken soll (Wechselblinker)

	

	 }

34

NÜTZLICHE PROGRAMMVORLAGEN

Unproblematisches Abfragen von Tastern
Bei der Verwendung von Tastern trifft man beim Programmieren meist auf zwei Probleme:

	 - Auch wenn der Taster dauerhaft gedrückt bleibt, wird die mit ihm verknüpfte Funktion in jedem 	
	 Programmzyklus einmal ausgeführt.

	 - Ungewolltes, mehrfaches Schalten des Tasters durch Vibrationen beim Drücken und Loslassen, 	
	 sogenanntes „Prellen“ stört den gewünschten Programmablauf.

Beides wird im folgendem Code mit zwei If-Abfragen, einer zusätzlichen Variablen sowie einer Zeitfunktion
realisiert, welche durch Prellen hervorgerufene Signale 100 ms nach Tastendruck ausblendet. Zusätzlich wird
gezeigt, wie das „Toggeln“ einer Variable, z.B. für das Ein-/Ausschalten damit realisiert werden kann.

Die Variable button_state speichert dabei den letzen Zustand des Tasters. Wird button_state in der ersten If-
Abfrage true, kann die Abfrage beim nächsten Programmzyklus nicht erneut durchlaufen werden. Dafür wird
die Bedingung der zweiten If-Abfrage erfüllt, wenn der Taster wieder losgelassen wird. Auch die Abfrage für
den nicht gedrückten Taster wird nur für einen Zyklus aktiv.

In der ersten If-Abfrage wird die Variable power invertiert. Jedesmal, wenn der Taster gedrückt wird, ändert
diese ihren Zustand. Sie steuert am Ende des Programms die LED an.

Werden mehrere Taster verwendet, ist es notwendig für jeden Taster eine eigene Zustandsvariable sowie
ggf. eine eigene unsigned long Variable für den Zeitwert anzulegen.

35

// Variables

bool button = false; 		 // Abfrage Eingang Taster

bool button_state = false; 	 	 // Hilfsvariable für Taster-Zustand

bool power = false; 	 	 // Zu toggelnde Variable (Ein-/Ausschalten)

bool LED = false; 		 // Variable für LED

unsigned long previousMillis = 0;	 // Letzter Millis-Wert

// Pin configuration

byte button_pin = 12;

byte LED_pin = 10;

void setup() {

pinMode(LED_pin, OUTPUT);

pinMode(button_pin, INPUT);

}

void loop() {

button = digitalRead(button_pin);

digitalWrite(LED_pin, LED);

if (button==true && button_state==false && millis()-previousMillis > 100){

 button_state = true;

 power = !power;

 previousMillis = millis();

 }

if (button==false && button_state==true && millis()-previousMillis > 100) {

 button_state = false;

 previousMillis = millis();

}

if (power==true){

 LED=true;

 } else LED=false;

}

36

ELEKTROMECHANISCHE BAUELEMENTE

Taster

Bedienelemente oder Kontakte zur Positionsabfrage
von Abdeckungen, Gehäuseteilen, Mechanik, usw.
Sie schließen den Stromkreis nur solange eine
Betätigung erfolgt.

Beispiel: Computertaste

Schalter

Bedienelemente, die nach dem Betätigen in ihrer
Schaltstellung bleiben. Durch erneutes Betätigen
oder ändern der Betätigungsrichtung kann die
Schaltstellung wieder geändert werden. Der
Stromkreis bleibt bis zum nächsten Ändern der
Schaltstellung geschlossen.

Beispiel: Schalter an Taschenlampe

Bei Tastern und Schaltern unterscheidet man
zwischen Druck-, Schiebe-, Kipp-, Zug-, Hebel- und
Drehschalter bzw. -taster. Sie können Einfach-,
Mehrfach- oder Wechselkontakte (Umschalter)
haben. Auch mehrere Schaltstellungen sind möglich.
Für viele Modelle gibt es eine große Auswahl von
aufsteckbaren Knöpfen und weiteres Zubehör. Auch
beleuchtete Varianten sind erhältlich.

Potentiometer

Ein durch Drehen oder Schieben veränderbarer
Widerstand. Ein beweglicher Schleifer kann auf
einer Widerstandsschicht aus Metall, Kohle oder
leitfähigem Plastik einen variablen Widerstands- bzw.
Spannungswert abgreifen. Da Potentiometer meist
nicht sehr belastbar sind, steuern sie selten direkt
den Verbraucher sondern geben einen Widerstand
für eine angeschlossene elektronische Schaltung
oder den Analogeingang eines Mikrocontrollers vor.

Potentiometer können direkt auf einer Platine
(Print) oder in das Gehäuse (Zentral) mit Schrauben
montiert werden. Die Wellen sind genormt und
es besteht eine große Auswahl an aufsteckbaren
Drehknöpfen. Auch eigene Knöpfe lassen sich relativ
einfach montieren.

Beispiele: Lautstärkeregler, Dimmer, Joysticks

Reed-Kontakt

Ein kleines Glasröhrchen mit zwei Kontakten an den
Enden, welche mit magnetisierbaren Plättchen im
Inneren verbunden sind, die nahe aneinander liegen.
Nähert man ein Magnetfeld, magnetisieren sich die
Plättchen und ziehen sich gegenseitig an, wodurch
Strom über die Kontakte fließen kann. Im Glaskörpers
befindet sich ein Gas, welches Funkenbildung und
Oxidation der Kontakte vermeidet.

Beispiel: Türkontakt von Alarmanlage, Sensor von
Fahrradtacho

37

Relais

Mit Relais kann man mit einer kleinen Spannung
eine große Spannung schalten oder auch umgekehrt.
Sie bestehen aus einer elektromagnetischen Spule
und einer Mechanik, welche bei bestromter Spule
Kontakte schließt. Da die beiden angeschlossenen
Stromkreise keine elektrische Verbindung haben,
spricht man von einer galvanischen Trennung.

Beispiel: Schaltung der Heizung von einem
Wäschetrockner durch die Steuerelektronik

Der große Bruder des Relais ist das Schütz, welches
im industriellen Bereich eingesetzt wird und große
Ströme und Spannungen schalten kann.

Solid-State-Relais funktionieren im Gegensatz zu
mechanischen Relais rein elektronisch, das heißt
Halbleiter übernehmen die Schaltfunktion. Sie
sind schneller, wartungsfrei, geräuschlos und meist
kompakter, aber auch anfälliger für Spannungsspitzen
z.B. beim Schalten von Motoren.

Mechanische Relais dürfen nicht direkt am Ausgang
eines Mikrocontrollers angeschlossen werden, da die
Spulen Spannungsspitzen erzeugen, welche den Chip
beschädigen können. Meist werden Transistoren
zur Steuerung von Relais dazwischen geschaltet.
Zusätzlich werden sogenannte „Freilaufdioden“ in
Sperrrichtung zur Relaisspule parallel geschaltet:

Ansteuerung eines Relais

LEISTUNGSELEKTRONIK

Optokoppler, Transistor und MOSFET

Mit einem Mikrocontroller können nur kleine
Verbraucher mit max. 20...40 mA wie z.B. eine
Standard-LED direkt am Ausgang betrieben werden.
Sollen Verbraucher mit höheren Leistungen oder
Spannungen geschaltet werden, sind Bauteile
nötig, welche mit dem Signal eines Controllers den
elektrischen Energiefluss eines Laststromkreises
steuern.

Optokoppler
Das Bauteil bestehen aus einer LED und einem
lichtempfindlichen Halbleiterbauteil, welche
elektrisch voneinander isoliert, d.h. galvanisch
getrennt sind. Nur durch das Licht wird das
Steuersignal übertragen. Sie werden genutzt, um
den Steuerstromkreis z.B. von einem Microkontroller
von dem Laststromkreis zu trennen. So kann ein 5V
Signal eine Schaltung mit 230V steuern ohne dass die
Spannungen miteinander in Berührung kommen. Die
Eingangsseite des Optokopplers mit der LED benötigt
einen Vorwiderstand. Die Ausgangsseite kann oft nur
schwach belastet werden, weshalb weitere Bauteile
der Leistungselektronik nötig sind.

38

Transistor
Ein Transistor ist ein elektronischer Schalter (digital)
bzw. auch Verstärker (analog) mit drei Anschlüssen.
Die Basis (B) steuert bei einem NPN-Transistor über
einen schwachen Strom die Leitfähigkeit zwischen
Collector (C) und Emitter (E), wobei der Basis-Strom
über den Emitter abfließt. Der Emitter wird mit
Minus verbunden, die Basis über einen geeigneten
Vorwiderstand (z.B. 10 kOhm) mit einem digitalen
Ausgang verbunden und der Collector mit dem
Minuspol eines Verbrauchers. Transistoren sind
für kleine bis mittlere Lasten (mehrere Ampere)
geeignet und sind in verschiedenen Belastbarkeiten
und Bauformen erhältlich. Bei Lasten ab ca. 1 A sind
jedoch meist Kühlkörper nötig um die Verlustwärme
der Collector-Emitter-Verbindung abzuführen. Der
Transistor ist nur für Gleichspannung geeignet.

MOSFET
Im Gegensatz zum Transistor ist der Übergangs-
widerstand bei diesem Bauteil nur sehr gering und
es können auch Lasten von zehn Ampere geschalten
werden ohne das Bauteil kühlen zu müssen. Das
Steuersignal kann bei den meisten Typen direkt auf
das sog. „Gate“ gegeben werden. Die Verbindung
zwischen „Source“ und „Drain“ wird dann leitfähig.
Der MOSFET ist nur für Gleichspannung geeignet.

Schaltung zur Ansteuerung eines Motors mit einer anderen
Betriebsspannung als der Microcontroller

TRIAC
Mit einem TRIAC lassen sich Wechselspannungen
fast verlustfrei schalten, z.B. ein 230V Motor
oder die Raumbeleuchtung. Sie werden z.B. in
Bewegungsmeldern ohne Relais eingesetzt.

ACHTUNG: Schaltungen mit 230V sollten nur von
einer Elektrofachkraft aufgebaut werden! Bitte
wendet euch bei einem solchen Vorhaben an eine
fachkundige Person!

ANZEIGEN

LED – Light Emitting Diode

Durch gezielte Verunreinigung (Dotierung) von
Halbleitern wie Silizium kann eine Diode mit
lichterzeugenden Eigenschaften hergestellt werden.
Je nach dotiertem Stoff kann Licht mit einer
bestimmten Wellenlänge erzeugt werden. Weißes
Licht wird durch bestrahlen einer Phosphorschicht
mit blauem Licht erzeugt.

Für die Lichterzeugung wird weniger als 20% der
elektrischen Energie benötigt, wie für die gleiche
Lichtleistung bei einer Glühlampe nötig wäre.

LEDs werden mit Gleichspannung und einer
vorgegebenen maximalen Spannung und Strom
betrieben. Sie reagieren sehr empfindlich auf
Spannungsänderungen und müssen deshalb immer
mit einem Vorwiderstand, bei höheren Leistungen
mit einer Konstantstromquelle (KSQ) oder LED-
Treiber, betrieben werden.

Der Pluspol einer LED wird Anode genannt, der
Minuspol Kathode. Da ein Verpolen der LED zu ihrer
Zerstörung führen kann, sind die Gehäuse oder
Anschlussdrähte entsprechend gekennzeichnet.

LEDs sind in verschiedenen Farben (auch Ultraviolett
und Infrarot), Gehäuseformen, Abstrahlwinkel und
Helligkeiten erhältlich und können gezielt nach
Verwendungszweck ausgewählt werden.

Mehrere LEDs können in Reihe geschalten werden,
wodurch sich die Betriebsspannung entsprechend
erhöht und der (begrenzte!) Strom gleich bleibt.

39

RGB-LEDs

In ihnen befinden sich gleich drei LED-Chips mit den
Grundfarben Rot, Grün und Blau. Durch Mischung
der drei Farben durch unterschiedliche Ansteuerung
der LED-Chips kann fast jede beliebige sichtbare
Lichtfarbe erzeugt werden, auch weiß. Die Mischung
erfolgt entweder durch Spannungsänderung an
den LED-Chips oder durch Pulsweitenmodulation
(PWM).

Die LED-Chips können entweder mit gemeinsamer
Anode (+), gemeinsamer Kathode (-) oder mit offenen
Kontakten ausgeführt sein.

In der Innenraumbeleuchtung werden zunehmend
RGBW-LEDs eingesetzt, die neben den drei
Grundfarben auch noch warm-, kalt- oder neutral-
weiße LED–Chips besitzen. Dadurch lassen sich
angenehmere Farbtemperaturen und Pastellfarben
erzeugen.

Beispiele: LED-Streifen, Großbildschirme für
Veranstaltungen, individualisierbare Lichtdekore,
Stimmungslichter

Hochleistungs-LEDs

Für die Beleuchtung von Räumen und Außenbereichen
werden LEDs höherer Leistung benötigt. Diese
bestehen meist aus einer Vielzahl in einem Gehäuse
untergebrachten LED-Chips, die in Summe eine hohe
Lichtleistung erbringen.

Um die Wärme der eng beieinander liegenden Chips
abführen zu können, werden die Halbleiter auf eine
Aluminium- oder Kupferplatte aufgebracht, die über
eine Wärmeleitpaste, - kleber oder –pad mit einem
Kühlkörper aus Aluminium thermisch verbunden ist.
Je nach abgegebener Wärmeleistung der LED wird
ein entsprechend großer Kühlkörper, ggf. auch eine
aktive Kühlung mit Lüftern (z.B. bei LED-Beamer)
notwendig.

Eine Überhitzung der LED kann zu Änderungen der
Lichtfarbe, Verkürzung der Lebensdauer oder zur
Zerstörung führen. Das Wärmemanagement spielt
bei Hochleistungs-LEDs deshalb eine große Rolle.

Aufgrund der hohen Leistungen werden diese LEDs
fast ausschließlich über Pulsweitenmodulation
(PWM) gedimmt.

Beispiele: Taschenlampen, Glühbirnen-Ersatz,
Fahrzeugbeleuchtung, LED-Blitz in Smartphones,
Bühnen- und Eventbeleuchtung

Konstantstromquellen (KSQ)

Bei LEDs höherer Leistung ist ein gleichbleibender
Betriebsstrom erforderlich um eine maximale
Lebensdauer und Helligkeit zu erreichen.

Dies ermöglichen Konstantstromquellen, kleine
Module, welche die Spannung immer so regeln, dass
ein festgelegter Strom fließt.

Viele KSQs lassen sich auch mit einem PWM-Signal
an einem zusätzlichen Anschluss direkt dimmen.

40

Akustische Signalgeber

Es gibt zwei häufig verwendete Techniken mit Strom
Töne zu erzeugen: Entweder als Lautsprecher mittels
an Elektromagneten gekoppelte Membrane oder
mithilfe von Piezo-Kristallen, die sich bei anlegen einer
Spannung minimal ausdehnen und so Töne erzeugen
können. Im Gegensatz zu Lautsprechern sind Piezo-
Signalgeber auf den Hoch- bis Ultraschallbereich
beschränkt und eigenen sich daher weniger zur
Klangwiedergabe. Sie werden aber aufgrund ihrer
kompakten Bauform oft in elektronischen Geräten
eingesetzt, die den Benutzer akustisch auf sich
aufmerksam machen wollen.

Beispiele: Akustische Fertigmeldung von Geschirr-
spülern und Waschmaschinen, Rauchmelder

SENSOREN

Lichtabhängige Widerstände (LDR)

Halbleiter-Bauteile, die ihren Widerstandswert stark
verringern, wenn Licht auf sie fällt. Sie sind vor allem
für sichtbares Licht geeignet.

Beispiel: Dämmerungsschalter

Temperaturabhängige Widerstände

Man unterscheidet:

NTC 	 	 negativer Temperaturkoeffizient
	 	 Heißleiter, steigt die Temperatur, 	 	
	 	 sinkt der Widerstandswert

PTC 	 	 positiver Temperaturkoeffizient
	 	 Kaltleiter, steigt die Temperatur,
	 	 steigt der Widerstandswert

Digitaler Temperatursensor
Ein Sensor mit integrierter Schaltung, welcher die
Temperatur misst und den Wert als Bitfolge oder
Bus-Telegramm (z.B. I2C) ausgibt.

Sein Vorteil liegt darin, dass die Leitung zum Sensor
keinen Einfluss auf das Messergebnis hat.

Infrarot-Messung
Ein optischer Sensor, der auf Infrarot- bzw.
Wärmestrahlung reagiert. Er wird dort eingesetzt,
wo berührungslos gemessen werden muss. Da der
Sensor nicht direkt mit der Messstelle in Berührung
kommt, sind auch sehr hohe Temperaturen
erfassbar.

Beispiel: Temperaturkontrolle von Lebensmitteln
oder unter Spannung stehender Teile

41

Beschleunigungssensor
Der Sensor selbst arbeitet meist mit Piezo-
Kristallen, auf denen eine bestimmte Masse bei
Beschleunigungen Druck ausübt. Die Kristalle
liefern dann eine kleine Spannung, die aber ohne
weitere Verstärkung nicht ausgewertet werden
kann. Meist ist in den Sensoren deshalb gleich direkt
die Verstärkerschaltung mit integriert. Diese gibt
dann entweder zur Beschleunigung proportionale
Spannungen aus oder stellt die Messwerte digital
über ein Bussystem (z.B. I2C) dem Mikrocontroller
zur Verfügung.

Beispiele: Gyroskop von Drohnen, Smartphones
und Navigationsgeräten, Alarmanlagen von
Motorrädern, Auslösung von Airbags

Dehnungsmessstreifen (DMS)

Auf eine Kunststofffolie sind Metallbahnen
aufgebracht. Wird die Folie mitsamt den Metallbahnen
gedehnt, wird deren Leitungsquerschnitt geringer und
ihre Leitungslänge länger. Ihr elektrischer Widerstand
steigt dadurch. Der Effekt tritt hauptsächlich bei
Dehnung in Längsrichtung zu den Metallbahnen
auf. DMS werden mit speziellen Klebstoffen auf
die Bauteile geklebt, deren Dehnung oder Biegung
erfasst werden soll. Sie sind selbst relativ kompakt,
reagieren aber auf kleinste Längenänderungen von
Oberflächen. Die Widerstandsänderung ist aber nur
sehr gering und können von einem Mikrokontroller
nicht erfasst werden, was eine Verstärkerschaltung
notwendig macht.

Beispiele: Personenwaage, Kranwaage,
Schwerlastwaage, Belastung von Stahlträgern,
Verwindung von Achsen bei Drehmomenten

Lichtschranken
Eine LED oder ein Laser senden einen Lichtstrahl aus,
der von einem Lichtsensor erfasst wird. Wird der
Strahl unterbrochen weil z.B. eine Person hindurch
geht, erhält der Lichtsensor kein Signal mehr und
gibt ein Steuersignal aus.

Es gibt zwei prinzipielle Arten von Lichtschranken:

Einweglichtschranke
Der Sensor besteht aus einem Sender, der den
Lichtstrahl aussendet und einen Empfänger, der den
Strahl überwacht und das Steuersignal liefert. Es
sind zwei getrennte Einheiten, die sich gegenüber
stehen und mehrere Meter voneinander entfernt
sein können.

Beispiel: Fahrzeugzähler am Parkhaus

Reflexlichtschranke
Hier sind Sender und Empfänger in einer Einheit
untergebracht und zeigen in die gleiche Richtung.
Entweder reflektiert ein Spiegel den Lichtstrahl oder
es werden reflektierende Gegenstände erkannt,
die den Strahl zurückwerfen. Die Reichweite ist bei
Reflexionslichtschranken geringer, da das Licht den
doppelten Weg zurücklegen muss.

Beispiel: Berührungsloser Schalter an öffentlichen
Wasserhähnen

Gabellichtschranken sind Einweglichtschranken, die
aber nur eine sehr kurze Distanz überwachen und
deshalb in einem Gehäuse untergebracht sind. Sie
dienen als optische Positionsschalter bei Klappen,
zur Drehzahlmessung oder zur Positionserkennung
bei linearen oder rotorischen Bewegungen mithilfe
von geschlitzten Streifen oder Scheiben.

Beispiel: Scrollrad bei Maus

42

Bewegungsmelder (PIR)

In den meisten Bewegungsmeldern ist ein
Infrarotsensor verbaut, der üblicherweise aus zwei
eng nebeneinanderliegenden Halbleiterelementen
besteht, die auf Wärmestrahlung reagieren. Durch
eine spezielle Waben- oder Lamellenoptik vor dem
Sensor werden Änderungen im Einfallswinkel der
Infrarotstrahlung, z.B. von einer vorbeigehenden
Person, von den beiden Halbleitern erkannt.

Zum Sensor gehört auch immer eine Auswerte-
schaltung mit einstellbarer Empfindlichkeit. Im
Vergleich zu Meldern der Installationstechnik haben
Bewegungsmelder für Mikrocontroller kein Netzteil
und keinen Relaisausgang für 230V sondern geben
nur ein Steuersignal an den Controller weiter.

Beispiel: Alarmanlagen, Lichtsteuerung

Ultraschall-Abstandssensor

Dieser Sensor beruht auf dem Echolot-Prinzip, wie
es Fledermäuse nutzen oder es in der Seefahrt oder
der Medizin zum Einsatz kommt. Ein Hochfrequenz-
Schallgeber sendet Ultraschall-Impulse aus, die von
einem davor befindlichem Objekt reflektiert und von
einem „Mikrofon“ wieder empfangen werden. Aus
der Zeit zwischen Senden und Empfangen ermittelt
der Sensor den Abstand zum Objekt.

Beispiel: Kollisionserkennung, Anwesenheits-
erkennung, Entfernungsmessung

Zudem gibt es Sensoren für viele weitere physikalische
Größen, auf die aber nicht weiter eingegangen wird:

	 - Luftfeuchtigkeit
	 - Luftdruck
	 - Drucksensor (Druck/Unterdruck)
	 - Durchflussmesser
	 - Feuchtigkeit in Stoffen
	 - Gasmelder
	 - Kompass-Module
	 - Kapazitiver Näherungsschalter
	 - Induktiver Näherungsschalter
	 - Geigerzähler (Radioaktivität)
	 - Textiler Dehnungsmessstreifen
	 - Optischer Maussensor
	 - uvm...

AKTOREN

DC-Motoren

Gleichstrommotoren bestehen prinzipiell aus
mindestens zwei Spulen um einen drehbar
gelagerten Magneten. Ein auf der Achse montierter
Kommutator polt die Spulen immer so um, dass ihr
erzeugtes Magnetfeld den Magneten und die Achse
in eine Drehbewegung versetzt.

Durch Umpolen der Anschlüsse kann die Drehrichtung
umgekehrt werden. Über Pulsweitenmodulation
kann die Drehgeschwindigkeit gesteuert werden.

Der Motor eignet sich für kontinuierliche, schnelle
Drehbewegungen, bei denen eine genaue
Positionierung der Achse nicht notwendig ist.

Beispiele: Lüfter, Pumpen, allgemeine Antriebe,
in Kombination mit Getrieben auch für größere
Kräfte

43

Servomotoren

Die häufig im RC-Modellbau eingesetzten Aktoren
besitzen ein integriertes Getriebe und eine eigene
Reglerelektronik, finden aber aufgrund ihrer
einfachen Nutzung auch häufigen Einsatz bei Arduino-
Projekten. Servos können über einen digitalen IO-
Pin mit Pulsweitenmodulation vom Mikrocontroller
direkt am PWM-Eingang angesteuert werden. Das
Puls-Pausenverhältnis des Signals gibt den Soll-Wert
für den Winkel der Servo-Achse vor.

Schrittmotoren

Durch ein spezielle Beschaltung der verbauten Spulen
kann die Achse dieses Motors um einen kleinen
Winkel verstellt werden. In Verbindung mit einem
Getriebe sind damit sehr genaue Positionieraufgaben
realisierbar. Für den Betrieb an Mikrocontrollern sind
fertig aufgebaute Treiberplatinen verfügbar.

Beispiele: Drucker, 3D-Drucker, kleine
Positionierantriebe, Neigung von Spiegeln in
optischen Geräten, Kleinroboter

Elektromagnete

Wird ein elektrischer Leiter von Strom durchflossen,
entsteht um ihn herum ein Magnetfeld. Diesen
Effekt machen sich Elektromagnete zunutze, indem
sie mit Spulen, die aus mehreren hundert oder
tausend Wicklungen Draht bestehen, ein relativ
starkes Magnetfeld erzeugen. Dieses kann eine
ferromagnetische (magnetisierbare) Metallplatte
oder einen Metallstift bewegen, der eine mechanische
Funktion ausführt.

Beispiele: Türöffner, Gong/Klingel, Verriegelungen,
Ventile, Relais und Schütze, Schrottkran

44

Konstantan/Widerstandsdraht
Ein Draht aus einer Kupfer/Nickel/Mangan Legierung
mit relativ hohem elektrischem Widerstand, der
über einen weiten Temperaturbereich gleich bleibt.
Dadurch eignet sich das Material für die Anfertigung
von Widerständen oder für Heizwicklungen.

Beispiel: Haartrockner, elektrische Fußboden-
heizung, Bügeleisen, Öfen

Nitinol®
Eine spezielle Nickel-Titan Legierung, die dazu
instande ist, sich seine Form zu „merken“ und diese
nach einer Verformung durch Erwärmen wieder
anzunehmen.

Als Draht kann das Material als elektronischer
Muskel eingesetzt werden, der sich bei Anlegen
einer Spannung zusammenzieht. Kleine lineare
Bewegungen sind ohne weitere Mechanik
realisierbar.

Beispiel: Medizinische Geräte, Modellbau

ERWEITERUNGEN
FÜR MICROCONTROLLER

DCF-Empfänger

Mit diesem kleinen Modul und dieser großen
Antenne können die Funksignale der Atomuhr bei
Frankfurt empfangen und ausgelesen werden. Damit
steht ein hochpräziser Zeitwert zur Verfügung, der
sich sogar automatisch auf Sommer- und Winterzeit
einstellt.

Beispiele: Zeitschaltprogramme, selbstgebaute
Funkuhren

SD-Kartenleser

Ein SD-Kartenslot mit dem ein Mikrocontroller
größere Datenmengen auf eine Speicherkarte
schreiben oder lesen kann.

Beispiele: Aufzeichnung von Messwerten
(Datenlogger), von Computer aufgespielte,
individuelle Muster für Lichteffekte oder
Melodien

45

Relaiskarte
Als Bausatz oder als fertige Platine erhältlich,
enthalten Relaiskarten alle notwendigen Bauteile
um mit den schwachen Arduino-Signalen größere
Lasten wie Motoren, Ventile, etc. zu steuern. Ebenso
gibt es MOSFET-Platinen für die Anteuerung von
Power-LEDs oder LED-Streifen.

Schnittstellen-Boards
Diese Boards erweiteren den Arduino um eine LAN,
WLAN oder BT Schnittstelle um den Mikrocontroller
in ein bestehendes Netzwerk einzubinden.

SONSTIGES

Steckboard-Verbinder

Diese Leitungen eignen sich durch ihre Stift-
bzw. Buchsenstecker sehr gut für die schnelle
Verdrahtung von Bauteilen auf dem Steckboard oder
bei Mockups. Es gibt sie in unterschiedlichen Längen
und verschiedenen Steckerkombinationen.

Batteriehalter

Sie besitzen entweder Fahnen zum Anlöten von
Leitungen, Clips von 9V-Blockbatterien oder sind
für die Bestückung auf Platinen vorgesehen. Die
Zellen sind dabei immer in Reihe geschaltet, d.h. die
Spannung wird erhöht. Sie lassen sich relativ einfach
durch Schraublöcher an Gehäusen montieren.

Häufig benutzte Batteriegrößen:

Bezeichnung Typ Spannung
(Batterie)

Spannung
(Akku)

Micro AAA 1,5V 1,2V
Mignon AA 1,5V 1,2V
Baby C 1,5V 1,2V
Mono D 1,5V 1,2V
9V Block 9V 9V 8,4V

46

KLEINE ELEKTRONIK-
FORMELSAMMLUNG

Ohmsches Gesetz:
Das ohmsche Gesetz beschreibt den Zusammenhang
zwischen Strom, Spannung und Widerstand und
ist damit Grundlage fast aller elektrotechnischen
Berechnungen.

I=U/R

 „Wenn ein Widerstand R an eine Spannung U
angelegt wird, dann fließt durch ihn ein Strom I.“

U = R x I

„Ein Widerstand R ruft bei einem Strom I einen
Spannungsabfall U hervor.“

R = U/I

„Um bei einer Spannung U den Stromfluss auf
einen Wert I zu begrenzen, muss ein Widerstand R
verschaltet werden.“

Rechenbeispiel:	
Eine Heizwicklung von einem Motorradgriff
hat im Betrieb einen Widerstand von 6 Ohm.
Die Batteriespannung beträgt 12 Volt. Der zu
erwartende Strom beträgt:

I = 12 V/6 Ohm = 2 A

Zeichen Größe Einheit Erklärung
U Spannung V (Volt) Spannung am Widerstand
I Strom A (Ampere) Strom, der durch Widerstand fließt
R Widerstand Ω (Ohm) Größe des Widerstandes

Widerstand-Farbcode Tabelle
Übliche Kohleschichtwiderstände werden mit
Farbringen gekennzeichnet. Ring 1 bestimmt die
erste Ziffer des Widerstandswertes, Ring 2 die zweite
Ziffer und Ring 3 den Zehner-Exponent.

Der vierte Ring sagt etwas über die Genauigkeit des
Bauteils aus, also wie weit der tatsächliche Wert
maximal vom aufgedruckten Wert abweichen kann.
Je nach Anwendung ist eine gewisse Präzision des
Wertes erforderlich, z.B. bei Messwiderständen.

Bei SMD-Widerständen sind die ersten beiden Ziffern
und der Exponent auf das Gehäuse aufgedruckt.

Beispiel:
Der über der Tabelle abgebildete Widerstand hat
einen Wert von 18.000 Ω bzw. 18 kΩ

Ring 1 Ring 2 Ring 3 Ring 4
Farbe Ziffer 1 Ziffer 2 Exponent Toleranz

Silber - - - +/- 10 %

Gold - - - +/- 5 %

Schwarz - 0 x 1 -

Braun 1 1 x 10 +/- 1 %

Rot 2 2 x 100 +/- 2 %

Orange 3 3 x 1.000 -

Gelb 4 4 x 10.000 -

Grün 5 5 x 100.000 +/- 0,5 %

Blau 6 6 x 10^6 +/- 0,25 %

Violett 7 7 x 10^7 +/- 0,1 %

Grau 8 8 x 10^8 +/- 0,05 %

Weiß 9 9 x 10^9

47

Berechnung von Vorwiderständen:
Viele elektronische Bauelemente dürfen nur mit
einer gewissen Spannung betrieben werden, da sie
ansonsten beschädigt oder überlastet werden. Kleine
Spannungsunterschiede bei kleinen Strömen können
mit Widerständen erzeugt werden. Man spricht dann
von einem Vorwiderstand, an dem der zu hohe Teil
der Spannung abfällt. Dazu wird das ohmsche Gesetz
genutzt:

R = U/I

Beispiel: Bei einer USB-Leuchte soll eine weiße LED
mit den Nennwerten 3,8V / 20mA an der genormten
USB-Spannung von 5V betrieben werden.

Als am Widerstand abfallende Spannung ergibt sich:

5V - 3 ,8V = 1,2V

Daraus kann zusammen mit dem durch Widerstand
und LED fließende Strom der Widerstand berechnet
werden:

R = 1,2V / 0 ,020A = 60 Ohm

Widerstände gibt es nur leider nicht in allen Werten!
Übliche Widerstandswerte sind:

1 - 2,2 - 3,3 - 4,7 - 6,8 - 10 - 22 - 33 - Ω

Man wählt den nächsthöheren Wert, damit die
LED nicht überlastet wird. Für die LED muss also
ein Vorwiderstand mit 68 Ohm verwendet werden.
Feinere Abstufungen gibt es bei Widerständen mit
niedrigerer Toleranz.

Widerstände lassen sich auch kombinieren: Mit sechs
10-Ohm-Widerständen hintereinander (in Reihe)
könnte man beispielsweise 60 Ohm realisieren.

Verlustleistungsberechnung:
Widerstände „fackeln“ die überschüssige Spannung
ab, indem sie elektrische Energie in Wärme
umwandeln.

Dem sind natürlich Grenzen gesetzt. Übliche
Kohleschicht-Widerstände können maximal 0,25
Watt „verbraten“.

Man sollte deshalb kontrollieren, ob der Widerstand
auch die Verlustleistung aushält:

P = U x I

Am Beispiel unserer USB-Leuchte:

P = 1,2V x 0 ,020A = 0,024W
0,024W < 0,25W

>> Mit Widerstand möglich!

Gleiche LED mit 1 kOhm Vorwiderstand an 24V:

P = 20,2V x 0 ,020A = 0,404W
0,404 W > 0,25W

>> Widerstand wird durchbrennen!

48

Laufdauer im Batteriebetrieb:
Möchte man berechnen, wie lange ein Gerät mit
einem Satz Batterien oder einem verbauten Akku
betrieben werden kann, verwendet man die Formel
für die elektrische Ladung:

t = Q /I Q = I*t I = Q /t

Beispiel: Unsere USB-Leuchte soll mit einem Akku
auch unabhängig vom PC funktionieren und mit
einer Klammer an einem Buch befestigt als Leselicht
dienen. Wir wollen, dass die Leuchte 4 Stunden
Licht zum Lesen liefert, bis sie wieder am USB-Port
geladen werden muss.

Da wir die nötige Kapazität des Akkus wissen wollen,
verwenden wir die Formel

Q = I * t

Q = 0,020 A * 4 h = 0 ,080 Ah

0,080 Ah = 80mAh

Jetzt können wir noch berechnen, wie lange es
dauert, bis der Akku vom USB-Port wieder voll
geladen werden kann. Angenommen, der Akku hält
den bei USB-Ports üblichen Ladestrom von 500mA
aus, kann man die Ladezeit wie folgt berechnen:

t = Q / I

t = 0 ,080 Ah / 0 ,500A = 0,16h

0,16h / 60 = 9 ,6 Minuten

Wegen Ladeverlusten - der Akku erwärmt sich beim
Laden - wird die reale Ladezeit etwas länger dauern.

Zeichen Größe Einheit Erklärung
Q Ladung Ah (Amperestunden) Ladung im Akku/in Batterie
I Strom A (Ampere) Strom, der den Akku lädt/entlädt
t Zeit h (Stunden) Zeit zum Laden/Entladen des Akkus

49

Berechnung des Stromverbrauchs:
…oder besser der elektrischen Arbeit. Sie ist das
Produkt aus Leistung und der Zeit, in der die Leistung
erbracht wird:

W = P x t

Zeichen Größe Einheit Erklärung
W Arbeit Wh (Wattstunden) Stromverbrauch
P Leistung W (Watt) Leistungsaufnahme des Verbrauchers
t Zeit h (Stunden) Betriebszeit des Verbrauchers

Mindestquerschnitte für Leitungen
Sobald Strom durch einen Leiter fließt - ausgenommen
Supraleiter - erwärmt dieser den Leiter und das
umgebene Isolationsmaterial. Außerdem liegt durch
den mit der Temperatur steigenden Widerstand der
Leitung eine geringere Spannung am anderen Ende
an.

Bei zu hohen Strömen kann dies zum Schmelzen der
Isolierung, Kurzschlüssen, Lösen von elektrischen
Verbindungen und zum Durchbrennen des Drahtes
bis zu gefährlichen Bränden führen. Darum muss
der Leitungsquerschnitt an den zu erwartenden
Betriebsstrom angepasst sein.

Eine richtige Dimensionierung der Leitungen spart
zudem Kupfer, Gewicht und Platz in Gehäusen.

Die Tabelle rechts ist eine kleine Hilfe zur Bestimmung
des Leiterquerschnittes. Besondere Umstände wie
eine höhere Umgebungstemperatur oder hohe
mechanische Belastung der Leitung kann auch
größere Querschnitte notwendig machen.

Ebenfalls einzuhalten sind die maximalen
Spannungswerte einer Leitung, die von Material und
Stärke der Isolation der Adern abhängig sind.

Maximaler Strom Querschnitt
1 A 0,05 mm²
2 A 0,14 mm²
4 A 0,25 mm²
9 A 0,5 mm²

12 A 0,75 mm²
15 A 1,0 mm²
18 A 1,5 mm²
26 A 2,5 mm²
34 A 4 mm²

Allgemeine Richtwerte für Mindestquerschnitte von Einzela-
dern bei Raumtemperatur (30°C) nach DIN VDE 0100 Teil 430

Beispiel: Berechnung des Jahresverbrauchs durch die
Standby-Leistung eines Netzteils von 0,3 Watt:

W = 0,3W x 24h x 365d = 2628 Wh

2628 Wh = 2,628 kWh

